Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Critical partitions and nodal deficiency of billiard eigenfunctions (1107.3489v6)

Published 18 Jul 2011 in math-ph, math.MP, math.SP, and quant-ph

Abstract: The paper addresses the the number of nodal domains for eigenfunctions of Schr\"{o}dinger operators with Dirichlet boundary conditions in bounded domains. In dimension one, the $n$th eigenfunction has $n$ nodal domains. The Courant Theorem claims that in any dimension, the number of nodal domains of the $n$th eigenfunction cannot exceed $n$. However, in dimensions higher than 1 the equality can hold for only finitely many eigenfunctions. Thus, a "nodal deficiency" arises. Examples are known of eigenfunctions with arbitrarily large index $n$ that have just two nodal domains. It was suggested in the recent years to look at the partitions of the domain, rather than eigenfunctions. It was shown in a paper by Helffer, Hoffmann-Ostenhof and Terracini that (under some natural conditions) bipartite partitions minimizing the maximum of the ground-state energies in sub-domains of the partition, correspond to the "Courant sharp" eigenfunctions, i.e. to those with zero nodal deficiency. In this paper, the authors show, under some genericity conditions, among the bipartite equipartitions, the nodal ones correspond exactly to the critical points of an analogous functional, with the nodal deficiency being equal to the Morse index at this point. This explains, in particular, why all the minimal partitions must be Courant sharp.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.