Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing (1509.02763v1)

Published 9 Sep 2015 in cs.SY

Abstract: A new way to design parameter estimators with enhanced performance is proposed in the paper. The procedure consists of two stages, first, the generation of new regression forms via the application of a dynamic operator to the original regression. Second, a suitable mix of these new regressors to obtain the final desired regression form. For classical linear regression forms the procedure yields a new parameter estimator whose convergence is established without the usual requirement of regressor persistency of excitation. The technique is also applied to nonlinear regressions with "partially" monotonic parameter dependence---giving rise again to estimators with enhanced performance. Simulation results illustrate the advantages of the proposed procedure in both scenarios.

Citations (49)

Summary

We haven't generated a summary for this paper yet.