Papers
Topics
Authors
Recent
2000 character limit reached

Machine Learning Model of the Swift/BAT Trigger Algorithm for Long GRB Population Studies (1509.01228v2)

Published 3 Sep 2015 in astro-ph.HE, physics.data-an, and stat.ML

Abstract: To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift/BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien 2014 is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of $\gtrsim97\%$ ($\lesssim 3\%$ error), which is a significant improvement on a cut in GRB flux which has an accuracy of $89.6\%$ ($10.4\%$ error). These models are then used to measure the detection efficiency of Swift as a function of redshift $z$, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of $n_0 \sim 0.48{+0.41}_{-0.23} \ {\rm Gpc}{-3} {\rm yr}{-1}$ with power-law indices of $n_1 \sim 1.7{+0.6}_{-0.5}$ and $n_2 \sim -5.9{+5.7}_{-0.1}$ for GRBs above and below a break point of $z_1 \sim 6.8{+2.8}_{-3.2}$. This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online (https://github.com/PBGraff/SwiftGRB_PEanalysis).

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.