Stable states of perturbed Markov chains (1508.05299v2)
Abstract: Given an infinitesimal perturbation of a discrete-time finite Markov chain, we seek the states that are stable despite the perturbation, \textit{i.e.} the states whose weights in the stationary distributions can be bounded away from $0$ as the noise fades away. Chemists, economists, and computer scientists have been studying irreducible perturbations built with exponential maps. Under these assumptions, Young proved the existence of and computed the stable states in cubic time. We fully drop these assumptions, generalize Young's technique, and show that stability is decidable as long as $f\in O(g)$ is. Furthermore, if the perturbation maps (and their multiplications) satisfy $f\in O(g)$ or $g\in O(f)$, we prove the existence of and compute the stable states and the metastable dynamics at all time scales where some states vanish. Conversely, if the big-$O$ assumption does not hold, we build a perturbation with these maps and no stable state. Our algorithm also runs in cubic time despite the general assumptions and the additional work. Proving the correctness of the algorithm relies on new or rephrased results in Markov chain theory, and on algebraic abstractions thereof.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.