2000 character limit reached
Constructing Infinitely Many Geometric Triangulations Of The Figure Eight Knot Complement (1508.04942v1)
Published 20 Aug 2015 in math.GT
Abstract: This paper considers "geometric" ideal triangulations of cusped hyperbolic 3-manifolds, i.e. decompositions into positive volume ideal hyperbolic tetrahedra. We exhibit infinitely many geometric ideal triangulations of the figure eight knot complement. As far as we know, this is the first construction of infinitely many geometric triangulations of a cusped hyperbolic 3-manifold. In contrast, our approach does not extend to the figure eight sister manifold, and it is unknown if there are infinitely many geometric triangulations for this manifold.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.