Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Triangulations of hyperbolic 3-manifolds admitting strict angle structures (1111.3168v2)

Published 14 Nov 2011 in math.GT

Abstract: It is conjectured that every cusped hyperbolic 3-manifold has a decomposition into positive volume ideal hyperbolic tetrahedra (a "geometric" triangulation of the manifold). Under a mild homology assumption on the manifold we construct topological ideal triangulations which admit a strict angle structure, which is a necessary condition for the triangulation to be geometric. In particular, every knot or link complement in the 3-sphere has such a triangulation. We also give an example of a triangulation without a strict angle structure, where the obstruction is related to the homology hypothesis, and an example illustrating that the triangulations produced using our methods are not generally geometric.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.