Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Heterotic Risk Models (1508.04883v4)

Published 20 Aug 2015 in q-fin.PM and q-fin.RM

Abstract: We give a complete algorithm and source code for constructing what we refer to as heterotic risk models (for equities), which combine: i) granularity of an industry classification; ii) diagonality of the principal component factor covariance matrix for any sub-cluster of stocks; and iii) dramatic reduction of the factor covariance matrix size in the Russian-doll risk model construction. This appears to prove a powerful approach for constructing out-of-sample stable short-lookback risk models. Thus, for intraday mean-reversion alphas based on overnight returns, Sharpe ratio optimization using our heterotic risk models sizably improves the performance characteristics compared to weighted regressions based on principal components or industry classification. We also give source code for: a) building statistical risk models; and ii) Sharpe ratio optimization with homogeneous linear constraints and position bounds.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.