Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Passenger Flow Predictions at Sydney International Airport: A Data-Driven Queuing Approach (1508.04839v1)

Published 20 Aug 2015 in cs.OH

Abstract: Time spent in processing zones at an airport are an important part of the passenger's airport experience. It undercuts the time spent in the rest of the airport, and therefore the revenue that could be generated from shopping and dining. It can also result in passengers missing flights and connections, which has significant operational repercussions. Inadequate staffing levels are often to blame for large congestion at an airport. In this paper, we present a stochastic simulation that estimates the operational uncertainty in passenger processing at immigration. Congestion and delays are estimated on arrivals and departures based on scheduled flight departures and arrivals. We demonstrate the use of cellular tracking data in refining the model, and an approach to controlling congestion by adjusting staffing levels.

Citations (15)

Summary

We haven't generated a summary for this paper yet.