Papers
Topics
Authors
Recent
2000 character limit reached

On the Convergence of SGD Training of Neural Networks

Published 12 Aug 2015 in cs.NE and cs.LG | (1508.02790v1)

Abstract: Neural networks are usually trained by some form of stochastic gradient descent (SGD)). A number of strategies are in common use intended to improve SGD optimization, such as learning rate schedules, momentum, and batching. These are motivated by ideas about the occurrence of local minima at different scales, valleys, and other phenomena in the objective function. Empirical results presented here suggest that these phenomena are not significant factors in SGD optimization of MLP-related objective functions, and that the behavior of stochastic gradient descent in these problems is better described as the simultaneous convergence at different rates of many, largely non-interacting subproblems

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.