Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion Maximum Correntropy Criterion Algorithms for Robust Distributed Estimation (1508.01903v2)

Published 8 Aug 2015 in stat.ML and cs.LG

Abstract: Robust diffusion adaptive estimation algorithms based on the maximum correntropy criterion (MCC), including adaptation to combination MCC and combination to adaptation MCC, are developed to deal with the distributed estimation over network in impulsive (long-tailed) noise environments. The cost functions used in distributed estimation are in general based on the mean square error (MSE) criterion, which is desirable when the measurement noise is Gaussian. In non-Gaussian situations, such as the impulsive-noise case, MCC based methods may achieve much better performance than the MSE methods as they take into account higher order statistics of error distribution. The proposed methods can also outperform the robust diffusion least mean p-power(DLMP) and diffusion minimum error entropy (DMEE) algorithms. The mean and mean square convergence analysis of the new algorithms are also carried out.

Citations (2)

Summary

We haven't generated a summary for this paper yet.