Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bidirectional PageRank Estimation: From Average-Case to Worst-Case (1507.08705v3)

Published 30 Jul 2015 in cs.DS and cs.DM

Abstract: We present a new algorithm for estimating the Personalized PageRank (PPR) between a source and target node on undirected graphs, with sublinear running-time guarantees over the worst-case choice of source and target nodes. Our work builds on a recent line of work on bidirectional estimators for PPR, which obtained sublinear running-time guarantees but in an average-case sense, for a uniformly random choice of target node. Crucially, we show how the reversibility of random walks on undirected networks can be exploited to convert average-case to worst-case guarantees. While past bidirectional methods combine forward random walks with reverse local pushes, our algorithm combines forward local pushes with reverse random walks. We also discuss how to modify our methods to estimate random-walk probabilities for any length distribution, thereby obtaining fast algorithms for estimating general graph diffusions, including the heat kernel, on undirected networks.

Citations (30)

Summary

We haven't generated a summary for this paper yet.