Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Algorithms for Personalized PageRank (1512.04633v1)

Published 15 Dec 2015 in cs.DS, cs.IR, and cs.SI

Abstract: We present new, more efficient algorithms for estimating random walk scores such as Personalized PageRank from a given source node to one or several target nodes. These scores are useful for personalized search and recommendations on networks including social networks, user-item networks, and the web. Past work has proposed using Monte Carlo or using linear algebra to estimate scores from a single source to every target, making them inefficient for a single pair. Our contribution is a new bidirectional algorithm which combines linear algebra and Monte Carlo to achieve significant speed improvements. On a diverse set of six graphs, our algorithm is 70x faster than past state-of-the-art algorithms. We also present theoretical analysis: while past algorithms require $\Omega(n)$ time to estimate a random walk score of typical size $\frac{1}{n}$ on an $n$-node graph to a given constant accuracy, our algorithm requires only $O(\sqrt{m})$ expected time for an average target, where $m$ is the number of edges, and is provably accurate. In addition to our core bidirectional estimator for personalized PageRank, we present an alternative algorithm for undirected graphs, a generalization to arbitrary walk lengths and Markov Chains, an algorithm for personalized search ranking, and an algorithm for sampling random paths from a given source to a given set of targets. We expect our bidirectional methods can be extended in other ways and will be useful subroutines in other graph analysis problems.

Citations (31)

Summary

We haven't generated a summary for this paper yet.