Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating an Activity Driven Hidden Markov Model (1507.07495v1)

Published 27 Jul 2015 in stat.ML, cs.DS, cs.LG, cs.SI, math.ST, and stat.TH

Abstract: We define a Hidden Markov Model (HMM) in which each hidden state has time-dependent $\textit{activity levels}$ that drive transitions and emissions, and show how to estimate its parameters. Our construction is motivated by the problem of inferring human mobility on sub-daily time scales from, for example, mobile phone records.

Summary

We haven't generated a summary for this paper yet.