Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations (1507.05441v1)

Published 20 Jul 2015 in cs.IT and math.IT

Abstract: This letter proposes a parametric sparse multiple input multiple output (MIMO)-OFDM channel estimation scheme based on the finite rate of innovation (FRI) theory, whereby super-resolution estimates of path delays with arbitrary values can be achieved. Meanwhile, both the spatial and temporal correlations of wireless MIMO channels are exploited to improve the accuracy of the channel estimation. For outdoor communication scenarios, where wireless channels are sparse in nature, path delays of different transmit-receive antenna pairs share a common sparse pattern due to the spatial correlation of MIMO channels. Meanwhile, the channel sparse pattern is nearly unchanged during several adjacent OFDM symbols due to the temporal correlation of MIMO channels. By simultaneously exploiting those MIMO channel characteristics, the proposed scheme performs better than existing state-of-the-art schemes. Furthermore, by joint processing of signals associated with different antennas, the pilot overhead can be reduced under the framework of the FRI theory.

Citations (77)

Summary

We haven't generated a summary for this paper yet.