Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Black-Box Policy Search with Probabilistic Programs (1507.04635v4)

Published 16 Jul 2015 in stat.ML and cs.AI

Abstract: In this work, we explore how probabilistic programs can be used to represent policies in sequential decision problems. In this formulation, a probabilistic program is a black-box stochastic simulator for both the problem domain and the agent. We relate classic policy gradient techniques to recently introduced black-box variational methods which generalize to probabilistic program inference. We present case studies in the Canadian traveler problem, Rock Sample, and a benchmark for optimal diagnosis inspired by Guess Who. Each study illustrates how programs can efficiently represent policies using moderate numbers of parameters.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.