Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Variational Inference in Probabilistic Programming (1301.1299v1)

Published 7 Jan 2013 in stat.ML, cs.AI, and cs.LG

Abstract: We present a new algorithm for approximate inference in probabilistic programs, based on a stochastic gradient for variational programs. This method is efficient without restrictions on the probabilistic program; it is particularly practical for distributions which are not analytically tractable, including highly structured distributions that arise in probabilistic programs. We show how to automatically derive mean-field probabilistic programs and optimize them, and demonstrate that our perspective improves inference efficiency over other algorithms.

Citations (132)

Summary

We haven't generated a summary for this paper yet.