Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Realization of aperiodic subshifts and uniform densities in groups (1507.03369v3)

Published 13 Jul 2015 in math.DS and math.GR

Abstract: A theorem of Gao, Jackson and Seward, originally conjectured to be false by Glasner and Uspenskij, asserts that every countable group admits a $2$-coloring. A direct consequence of this result is that every countable group has a strongly aperiodic subshift on the alphabet ${0,1}$. In this article, we use Lov\'asz local lemma to first give a new simple proof of said theorem, and second to prove the existence of a $G$-effectively closed strongly aperiodic subshift for any finitely generated group $G$. We also study the problem of constructing subshifts which generalize a property of Sturmian sequences to finitely generated groups. More precisely, a subshift over the alphabet ${0,1}$ has uniform density $\alpha \in [0,1]$ if for every configuration the density of $1$'s in any increasing sequence of balls converges to $\alpha$. We show a slightly more general result which implies that these subshifts always exist in the case of groups of subexponential growth.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.