A problem of Wang on Davenport constant for the multiplicative semigroup of the quotient ring of $\F_2[x]$ (1507.03182v1)
Abstract: Let $\F_q[x]$ be the ring of polynomials over the finite field $\F_q$, and let $f$ be a polynomial of $\F_q[x]$. Let $R=\frac{\F_q[x]}{(f)}$ be a quotient ring of $\F_q[x]$ with $0\neq R\neq \F_q[x]$. Let $\mathcal{S}R$ be the multiplicative semigroup of the ring $R$, and let ${\rm U}(\mathcal{S}_R)$ be the group of units of $\mathcal{S}_R$. The Davenport constant ${\rm D}(\mathcal{S}_R)$ of the multiplicative semigroup $\mathcal{S}_R$ is the least positive integer $\ell$ such that for any $\ell$ polynomials $g_1,g_2,\ldots,g{\ell}\in \F_q[x]$, there exists a subset $I\subsetneq [1,\ell]$ with $$\prod\limits_{i\in I} g_i \equiv \prod\limits_{i=1}{\ell} g_i\pmod f.$$ In this manuscript, we proved that for the case of $q=2$, $${\rm D}({\rm U}(\mathcal{S}R))\leq {\rm D}(\mathcal{S}_R)\leq {\rm D}({\rm U}(\mathcal{S}_R))+\delta_f,$$ where \begin{displaymath} \delta_f=\left{\begin{array}{ll} 0 & \textrm{if $\gcd(x*(x+1{\mathbb{F}2}),\ f)=1{\F_{2}}$}\ 1 & \textrm{if $\gcd(x*(x+1_{\mathbb{F}2}),\ f)\in {x, \ x+1{\mathbb{F}2}}$}\ 2 & \textrm{if $gcd(x*(x+1{\mathbb{F}2}),f)=x*(x+1{\mathbb{F}_2}) $}\ \end{array} \right. \end{displaymath} which partially answered an open problem of Wang on Davenport constant for the multiplicative semigroup of $\frac{\F_q[x]}{(f)}$ (G.Q. Wang, \emph{Davenport constant for semigroups II,} Journal of Number Theory, 155 (2015) 124--134).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.