Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending local features with contextual information in graph kernels (1507.02186v2)

Published 8 Jul 2015 in cs.LG

Abstract: Graph kernels are usually defined in terms of simpler kernels over local substructures of the original graphs. Different kernels consider different types of substructures. However, in some cases they have similar predictive performances, probably because the substructures can be interpreted as approximations of the subgraphs they induce. In this paper, we propose to associate to each feature a piece of information about the context in which the feature appears in the graph. A substructure appearing in two different graphs will match only if it appears with the same context in both graphs. We propose a kernel based on this idea that considers trees as substructures, and where the contexts are features too. The kernel is inspired from the framework in [6], even if it is not part of it. We give an efficient algorithm for computing the kernel and show promising results on real-world graph classification datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.