Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extending local features with contextual information in graph kernels

Published 8 Jul 2015 in cs.LG | (1507.02186v2)

Abstract: Graph kernels are usually defined in terms of simpler kernels over local substructures of the original graphs. Different kernels consider different types of substructures. However, in some cases they have similar predictive performances, probably because the substructures can be interpreted as approximations of the subgraphs they induce. In this paper, we propose to associate to each feature a piece of information about the context in which the feature appears in the graph. A substructure appearing in two different graphs will match only if it appears with the same context in both graphs. We propose a kernel based on this idea that considers trees as substructures, and where the contexts are features too. The kernel is inspired from the framework in [6], even if it is not part of it. We give an efficient algorithm for computing the kernel and show promising results on real-world graph classification datasets.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.