Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact Morse index computation for nodal radial solutions of Lane-Emden problems (1507.01360v2)

Published 6 Jul 2015 in math.AP

Abstract: We consider the semilinear Lane-Emden problem \begin{equation}\label{problemAbstract} \left{\begin{array}{lr}-\Delta u= |u|{p-1}u\qquad \mbox{ in }B u=0\qquad\qquad\qquad\mbox{ on }\partial B \end{array}\right.\tag{$\mathcal E_p$} \end{equation} where $B$ is the unit ball of $\mathbb RN$, $N\geq2$, centered at the origin and $1<p<p_S$, with $p_S=+\infty$ if $N=2$ and $p_S=\frac{N+2}{N-2}$ if $N\geq3$. Our main result is to prove that in dimension $N=2$ the Morse index of the least energy sign-changing radial solution $u_p$ of \eqref{problemAbstract} is exactly $12$ if $p$ is sufficiently large. As an intermediate step we compute explicitly the first eigenvalue of a limit weighted problem in $\mathbb RN$ in any dimension $N\geq2$.

Summary

We haven't generated a summary for this paper yet.