Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic base loci via Okounkov bodies (1507.00817v3)

Published 3 Jul 2015 in math.AG

Abstract: An Okounkov body is a convex subset of Euclidean space associated to a divisor on a smooth projective variety with respect to an admissible flag. In this paper, we recover the asymptotic base loci from the Okounkov bodies by studying various asymptotic invariants such as the asymptotic valuations and the moving Seshadri constants. Consequently, we obtain the nefness and ampleness criteria of divisors in terms of the Okounkov bodies. Furthermore, we compute the divisorial Zariski decomposition by the Okounkov bodies, and find upper and lower bounds for moving Seshadri constants given by the size of simplexes contained in the Okounkov bodies.

Summary

We haven't generated a summary for this paper yet.