Rigorous results for a population model with selection II: genealogy of the population
Abstract: We consider a model of a population of fixed size $N$ undergoing selection. Each individual acquires beneficial mutations at rate $\mu_N$, and each beneficial mutation increases the individual's fitness by $s_N$. Each individual dies at rate one, and when a death occurs, an individual is chosen with probability proportional to the individual's fitness to give birth. Under certain conditions on the parameters $\mu_N$ and $s_N$, we show that the genealogy of the population can be described by the Bolthausen-Sznitman coalescent. This result confirms predictions of Desai, Walczak, and Fisher (2013), and Neher and Hallatschek (2013).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.