Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Deep Speaker Feature Learning for Text-Dependent Speaker Recognition (1506.08349v1)

Published 28 Jun 2015 in cs.CL, cs.LG, and cs.NE

Abstract: A deep learning approach has been proposed recently to derive speaker identifies (d-vector) by a deep neural network (DNN). This approach has been applied to text-dependent speaker recognition tasks and shows reasonable performance gains when combined with the conventional i-vector approach. Although promising, the existing d-vector implementation still can not compete with the i-vector baseline. This paper presents two improvements for the deep learning approach: a phonedependent DNN structure to normalize phone variation, and a new scoring approach based on dynamic time warping (DTW). Experiments on a text-dependent speaker recognition task demonstrated that the proposed methods can provide considerable performance improvement over the existing d-vector implementation.

Citations (28)

Summary

We haven't generated a summary for this paper yet.