Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identification and Inference for Marginal Average Treatment Effect on the Treated With an Instrumental Variable (1506.08149v2)

Published 26 Jun 2015 in stat.ME

Abstract: In observational studies, treatments are typically not randomized and therefore estimated treatment effects may be subject to confounding bias. The instrumental variable (IV) design plays the role of a quasi-experimental handle since the IV is associated with the treatment and only affects the outcome through the treatment. In this paper, we present a novel framework for identification and inference using an IV for the marginal average treatment effect amongst the treated (ETT) in the presence of unmeasured confounding. For inference, we propose three different semiparametric approaches: (i) inverse probability weighting (IPW), (ii) outcome regression (OR), and (iii) doubly robust (DR) estimation, which is consistent if either (i) or (ii) is consistent, but not necessarily both. A closed-form locally semiparametric efficient estimator is obtained in the simple case of binary IV and outcome and the efficiency bound is derived for the more general case.

Citations (22)

Summary

We haven't generated a summary for this paper yet.