Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Harnack inequalities and Gaussian estimates for random walks on metric measure spaces (1506.07539v1)

Published 24 Jun 2015 in math.PR and math.AP

Abstract: We characterize Gaussian estimates for transition probability of a discrete time Markov chain in terms of geometric properties of the underlying state space. In particular, we show that the following are equivalent: (1) Two sided Gaussian bounds on heat kernel (2) A scale invariant Parabolic Harnack inequality (3) Volume doubling property and a scale invariant Poincar\'{e} inequality. The underlying state space is a metric measure space, a setting that includes both manifolds and graphs as special cases. An important feature of our work is that our techniques are robust to small perturbations of the underlying space and the Markov kernel. In particular, we show the stability of the above properties under quasi-isometries. We discuss various applications and examples.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.