Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Method for Stock Forecasting based on Fuzzy Time Series Combined with the Longest Common/Repeated Sub-sequence (1506.06366v1)

Published 21 Jun 2015 in cs.CE, cs.AI, and cs.NE

Abstract: Stock price forecasting is an important issue for investors since extreme accuracy in forecasting can bring about high profits. Fuzzy Time Series (FTS) and Longest Common/Repeated Sub-sequence (LCS/LRS) are two important issues for forecasting prices. However, to the best of our knowledge, there are no significant studies using LCS/LRS to predict stock prices. It is impossible that prices stay exactly the same as historic prices. Therefore, this paper proposes a state-of-the-art method which combines FTS and LCS/LRS to predict stock prices. This method is based on the principle that history will repeat itself. It uses different interval lengths in FTS to fuzzify the prices, and LCS/LRS to look for the same pattern in the historical prices to predict future stock prices. In the experiment, we examine various intervals of fuzzy time sets in order to achieve high prediction accuracy. The proposed method outperforms traditional methods in terms of prediction accuracy and, furthermore, it is easy to implement.

Summary

We haven't generated a summary for this paper yet.