The Local Semicircle Law for Random Matrices with a Fourfold Symmetry (1506.04683v2)
Abstract: We consider real symmetric and complex Hermitian random matrices with the additional symmetry $h_{xy}=h_{N-x,N-y}$. The matrix elements are independent (up to the fourfold symmetry) and not necessarily identically distributed. This ensemble naturally arises as the Fourier transform of a Gaussian orthogonal ensemble (GOE). It also occurs as the flip matrix model - an approximation of the two-dimensional Anderson model at small disorder. We show that the density of states converges to the Wigner semicircle law despite the new symmetry type. We also prove the local version of the semicircle law on the optimal scale.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.