Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplex Networks with Intrinsic Fitness: Modeling the Merit-Fame Interplay via Latent Layers (1506.04189v3)

Published 12 Jun 2015 in cs.SI, cond-mat.stat-mech, cs.MA, and physics.soc-ph

Abstract: We consider the problem of growing multiplex networks with intrinsic fitness and inter-layer coupling. The model comprises two layers; one that incorporates fitness and another in which attachments are preferential. In the first layer, attachment probabilities are proportional to fitness values, and in the second layer, proportional to the sum of degrees in both layers. We provide analytical closed-form solutions for the joint distributions of fitness and degrees. We also derive closed-form expressions for the expected value of the degree as a function of fitness. The model alleviates two shortcomings that are present in the current models of growing multiplex networks: homogeneity of connections, and homogeneity of fitness. In this paper, we posit and analyze a growth model that is heterogeneous in both senses.

Summary

We haven't generated a summary for this paper yet.