Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Average Classification Algorithm (1506.01520v3)

Published 4 Jun 2015 in stat.ML and cs.LG

Abstract: Many classification algorithms produce a classifier that is a weighted average of kernel evaluations. When working with a high or infinite dimensional kernel, it is imperative for speed of evaluation and storage issues that as few training samples as possible are used in the kernel expansion. Popular existing approaches focus on altering standard learning algorithms, such as the Support Vector Machine, to induce sparsity, as well as post-hoc procedures for sparse approximations. Here we adopt the latter approach. We begin with a very simple classifier, given by the kernel mean $$ f(x) = \frac{1}{n} \sum\limits_{i=i}{n} y_i K(x_i,x) $$ We then find a sparse approximation to this kernel mean via herding. The result is an accurate, easily parallelized algorithm for learning classifiers.

Citations (11)

Summary

We haven't generated a summary for this paper yet.