Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Influence of Context on Dialogue Act Recognition (1506.00839v2)

Published 2 Jun 2015 in cs.CL

Abstract: This article presents an analysis of the influence of context information on dialog act recognition. We performed experiments on the widely explored Switchboard corpus, as well as on data annotated according to the recent ISO 24617-2 standard. The latter was obtained from the Tilburg DialogBank and through the mapping of the annotations of a subset of the Let's Go corpus. We used a classification approach based on SVMs, which had proved successful in previous work and allowed us to limit the amount of context information provided. This way, we were able to observe the influence patterns as the amount of context information increased. Our base features consisted of n-grams, punctuation, and wh-words. Context information was obtained from one to five preceding segments and provided either as n-grams or dialog act classifications, with the latter typically leading to better results and more stable influence patterns. In addition to the conclusions about the importance and influence of context information, our experiments on the Switchboard corpus also led to results that advanced the state-of-the-art on the dialog act recognition task on that corpus. Furthermore, the results obtained on data annotated according to the ISO 24617-2 standard define a baseline for future work and contribute for the standardization of experiments in the area.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Eugénio Ribeiro (10 papers)
  2. Ricardo Ribeiro (32 papers)
  3. David Martins de Matos (39 papers)
Citations (34)