Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RBIR using Interest Regions and Binary Signatures (1506.00368v1)

Published 1 Jun 2015 in cs.CV

Abstract: In this paper, we introduce an approach to overcome the low accuracy of the Content-Based Image Retrieval (CBIR) (when using the global features). To increase the accuracy, we use Harris-Laplace detector to identify the interest regions of image. Then, we build the Region-Based Image Retrieval (RBIR). For the efficient image storage and retrieval, we encode images into binary signatures. The binary signature of a image is created from its interest regions. Furthermore, this paper also provides an algorithm for image retrieval on S-tree by comparing the images' signatures on a metric similarly to EMD (earth mover's distance). Finally, we evaluate the created models on COREL's images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.