Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear-Time Superbubble Identification Algorithm for Genome Assembly (1505.04019v6)

Published 15 May 2015 in cs.DS

Abstract: DNA sequencing is the process of determining the exact order of the nucleotide bases of an individual's genome in order to catalogue sequence variation and understand its biological implications. Whole-genome sequencing techniques produce masses of data in the form of short sequences known as reads. Assembling these reads into a whole genome constitutes a major algorithmic challenge. Most assembly algorithms utilize de Bruijn graphs constructed from reads for this purpose. A critical step of these algorithms is to detect typical motif structures in the graph caused by sequencing errors and genome repeats, and filter them out; one such complex subgraph class is a so-called superbubble. In this paper, we propose an O(n+m)-time algorithm to detect all superbubbles in a directed acyclic graph with n nodes and m (directed) edges, improving the best-known O(m log m)-time algorithm by Sung et al.

Citations (14)

Summary

We haven't generated a summary for this paper yet.