Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

A new generalization of the $P_1$ non-conforming FEM to higher polynomial degrees (1505.02044v2)

Published 8 May 2015 in math.NA

Abstract: This paper generalizes the non-conforming FEM of Crouzeix and Raviart and its fundamental projection property by a novel mixed formulation for the Poisson problem based on the Helmholtz decomposition. The new formulation allows for ansatz spaces of arbitrary polynomial degree and its discretization coincides with the mentioned non-conforming FEM for the lowest polynomial degree. The discretization directly approximates the gradient of the solution instead of the solution itself. Besides the a priori and medius analysis, this paper proves optimal convergence rates for an adaptive algorithm for the new discretization. These are also demonstrated in numerical experiments. Furthermore, this paper focuses on extensions of this new scheme to quadrilateral meshes, mixed FEMs, and three space dimensions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)