Adaptive Bayesian credible sets in regression with a Gaussian process prior
Abstract: We investigate two empirical Bayes methods and a hierarchical Bayes method for adapting the scale of a Gaussian process prior in a nonparametric regression model. We show that all methods lead to a posterior contraction rate that adapts to the smoothness of the true regression function. Furthermore, we show that the corresponding credible sets cover the true regression function whenever this function satisfies a certain extrapolation condition. This condition depends on the specific method, but is implied by a condition of self-similarity. The latter condition is shown to be satisfied with probability one under the prior distribution.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.