Papers
Topics
Authors
Recent
Search
2000 character limit reached

Entanglement and thermodynamics in general probabilistic theories

Published 27 Apr 2015 in quant-ph | (1504.07045v3)

Abstract: Entanglement is one of the most striking features of quantum mechanics, and yet it is not specifically quantum. More specific to quantum mechanics is the connection between entanglement and thermodynamics, which leads to an identification between entropies and measures of pure state entanglement. Here we search for the roots of this connection, investigating the relation between entanglement and thermodynamics in the framework of general probabilistic theories. We first address the question whether an entangled state can be transformed into another by means of local operations and classical communication. Under two operational requirements, we prove a general version of the Lo-Popescu theorem, which lies at the foundations of the theory of pure-state entanglement. We then consider a resource theory of purity where free operations are random reversible transformations, modelling the scenario where an agent has limited control over the dynamics of a closed system. Our key result is a duality between the resource theory of entanglement and the resource theory of purity, valid for every physical theory where all processes arise from pure states and reversible interactions at the fundamental level. As an application of the main result, we establish a one-to-one correspondence between entropies and measures of pure bipartite entanglement and exploit it to define entanglement measures in the general probabilistic framework. In addition, we show a duality between the task of information erasure and the task of entanglement generation, whereby the existence of entropy sinks (systems that can absorb arbitrary amounts of information) becomes equivalent to the existence of entanglement sources (correlated systems from which arbitrary amounts of entanglement can be extracted).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.