Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational Cost Reduction in Learned Transform Classifications (1504.06779v2)

Published 26 Apr 2015 in cs.CV and stat.ML

Abstract: We present a theoretical analysis and empirical evaluations of a novel set of techniques for computational cost reduction of classifiers that are based on learned transform and soft-threshold. By modifying optimization procedures for dictionary and classifier training, as well as the resulting dictionary entries, our techniques allow to reduce the bit precision and to replace each floating-point multiplication by a single integer bit shift. We also show how the optimization algorithms in some dictionary training methods can be modified to penalize higher-energy dictionaries. We applied our techniques with the classifier Learning Algorithm for Soft-Thresholding, testing on the datasets used in its original paper. Our results indicate it is feasible to use solely sums and bit shifts of integers to classify at test time with a limited reduction of the classification accuracy. These low power operations are a valuable trade off in FPGA implementations as they increase the classification throughput while decrease both energy consumption and manufacturing cost.

Citations (3)

Summary

We haven't generated a summary for this paper yet.