Papers
Topics
Authors
Recent
2000 character limit reached

Shape optimization for surface functionals in Navier--Stokes flow using a phase field approach

Published 24 Apr 2015 in math.OC | (1504.06402v1)

Abstract: We consider shape and topology optimization for fluids which are governed by the Navier--Stokes equations. Shapes are modelled with the help of a phase field approach and the solid body is relaxed to be a porous medium. The phase field method uses a Ginzburg--Landau functional in order to approximate a perimeter penalization. We focus on surface functionals and carefully introduce a new modelling variant, show existence of minimizers and derive first order necessary conditions. These conditions are related to classical shape derivatives by identifying the sharp interface limit with the help of formally matched asymptotic expansions. Finally, we present numerical computations based on a Cahn--Hilliard type gradient descent which demonstrate that the method can be used to solve shape optimization problems for fluids with the help of the new approach.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.