Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical approximation of phase field based shape and topology optimization for fluids (1405.3480v1)

Published 14 May 2014 in math.OC

Abstract: We consider the problem of finding optimal shapes of fluid domains. The fluid obeys the Navier--Stokes equations. Inside a holdall container we use a phase field approach using diffuse interfaces to describe the domain of free flow. We formulate a corresponding optimization problem where flow outside the fluid domain is penalized. The resulting formulation of the shape optimization problem is shown to be well-posed, hence there exists a minimizer, and first order optimality conditions are derived. For the numerical realization we introduce a mass conserving gradient flow and obtain a Cahn--Hilliard type system, which is integrated numerically using the finite element method. An adaptive concept using reliable, residual based error estimation is exploited for the resolution of the spatial mesh. The overall concept is numerically investigated and comparison values are provided.

Summary

We haven't generated a summary for this paper yet.