Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Hierarchical Distance-dependent Bayesian Model for Event Coreference Resolution

Published 22 Apr 2015 in cs.CL and stat.ML | (1504.05929v2)

Abstract: We present a novel hierarchical distance-dependent Bayesian model for event coreference resolution. While existing generative models for event coreference resolution are completely unsupervised, our model allows for the incorporation of pairwise distances between event mentions -- information that is widely used in supervised coreference models to guide the generative clustering processing for better event clustering both within and across documents. We model the distances between event mentions using a feature-rich learnable distance function and encode them as Bayesian priors for nonparametric clustering. Experiments on the ECB+ corpus show that our model outperforms state-of-the-art methods for both within- and cross-document event coreference resolution.

Citations (65)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.