Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Honeybees-inspired heuristic algorithms for numerical optimisation (1504.05766v1)

Published 22 Apr 2015 in cs.NE

Abstract: Swarm intelligence is all about developing collective behaviours to solve complex, ill-structured and large-scale problems. Efficiency in collective behaviours depends on how to harmonise the individual contributions so that a complementary collective effort can be achieved to offer a useful solution. The main points in organising the harmony remains as managing the diversification and intensification actions appropriately, where the efficiency of collective behaviours depends on blending these two actions appropriately. In this study, two swarm intelligence algorithms inspired of natural honeybee colonies have been overviewed with many respects and two new revisions and a hybrid version have been studied to improve the efficiencies in solving numerical optimisation problems, which are well-known hard benchmarks. Consequently, the revisions and especially the hybrid algorithm proposed have outperformed the two original bee algorithms in solving these very hard numerical optimisation benchmarks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.