Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Bee Colony in an Artificial Bee Colony for Solving Engineering Design Problems (1211.0957v1)

Published 22 Oct 2012 in cs.CE and q-bio.QM

Abstract: A wide range of engineering design problems have been solved by the algorithms that simulates collective intelligence in swarms of birds or insects. The Artificial Bee Colony or ABC is one of the recent additions to the class of swarm intelligence based algorithms that mimics the foraging behavior of honey bees. ABC consists of three groups of bees namely employed, onlooker and scout bees. In ABC, the food locations represent the potential candidate solution. In the present study an attempt is made to generate the population of food sources (Colony Size) adaptively and the variant is named as A-ABC. A-ABC is further enhanced to improve convergence speed and exploitation capability, by employing the concept of elitism, which guides the bees towards the best food source. This enhanced variant is called E-ABC. The proposed algorithms are validated on a set of standard benchmark problems with varying dimensions taken from literature and on five engineering design problems. The numerical results are compared with the basic ABC and three recent variant of ABC. Numerically and statistically simulated results illustrate that the proposed method is very efficient and competitive.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tarun Kumar Sharma (5 papers)
  2. Millie Pant (4 papers)
  3. V. P. Singh (3 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.