Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 42 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Self-similar Magneto-electric Nanocircuit Technology for Probabilistic Inference Engines (1504.04056v1)

Published 15 Apr 2015 in cs.ET

Abstract: Probabilistic graphical models are powerful mathematical formalisms for machine learning and reasoning under uncertainty that are widely used for cognitive computing. However they cannot be employed efficiently for large problems (with variables in the order of 100K or larger) on conventional systems, due to inefficiencies resulting from layers of abstraction and separation of logic and memory in CMOS implementations. In this paper, we present a magneto-electric probabilistic technology framework for implementing probabilistic reasoning functions. The technology leverages Straintronic Magneto-Tunneling Junction (S-MTJ) devices in a novel mixed-signal circuit framework for direct computations on probabilities while enabling in-memory computations with persistence. Initial evaluations of the Bayesian likelihood estimation operation occurring during Bayesian Network inference indicate up to 127x lower area, 214x lower active power, and 70x lower latency compared to an equivalent 45nm CMOS Boolean implementation.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.