Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Arbitrary Statistical Mixtures of Discrete Distributions

Published 10 Apr 2015 in cs.LG and cs.DS | (1504.02526v1)

Abstract: We study the problem of learning from unlabeled samples very general statistical mixture models on large finite sets. Specifically, the model to be learned, $\vartheta$, is a probability distribution over probability distributions $p$, where each such $p$ is a probability distribution over $[n] = {1,2,\dots,n}$. When we sample from $\vartheta$, we do not observe $p$ directly, but only indirectly and in very noisy fashion, by sampling from $[n]$ repeatedly, independently $K$ times from the distribution $p$. The problem is to infer $\vartheta$ to high accuracy in transportation (earthmover) distance. We give the first efficient algorithms for learning this mixture model without making any restricting assumptions on the structure of the distribution $\vartheta$. We bound the quality of the solution as a function of the size of the samples $K$ and the number of samples used. Our model and results have applications to a variety of unsupervised learning scenarios, including learning topic models and collaborative filtering.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.