Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Modal Analysis Using Sparse and Co-prime Arrays (1504.01258v1)

Published 6 Apr 2015 in cs.IT and math.IT

Abstract: Let a measurement consist of a linear combination of damped complex exponential modes, plus noise. The problem is to estimate the parameters of these modes, as in line spectrum estimation, vibration analysis, speech processing, system identification, and direction of arrival estimation. Our results differ from standard results of modal analysis to the extent that we consider sparse and co-prime samplings in space, or equivalently sparse and co-prime samplings in time. Our main result is a characterization of the orthogonal subspace. This is the subspace that is orthogonal to the signal subspace spanned by the columns of the generalized Vandermonde matrix of modes in sparse or co-prime arrays. This characterization is derived in a form that allows us to adapt modern methods of linear prediction and approximate least squares, such as iterative quadratic maximum likelihood (IQML), for estimating mode parameters. Several numerical examples are presented to demonstrate the validity of the proposed modal estimation methods, and to compare the fidelity of modal estimation with sparse and co-prime arrays, versus SNR. Our calculations of Cram\'{e}r-Rao bounds allow us to analyze the loss in performance sustained by sparse and co-prime arrays that are compressions of uniform linear arrays.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.