Papers
Topics
Authors
Recent
Search
2000 character limit reached

Prime factors of quantum Schubert cell algebras and clusters for quantum Richardson varieties

Published 21 Mar 2015 in math.QA and math.RA | (1503.06297v2)

Abstract: The understanding of the topology of the spectra of quantum Schubert cell algebras hinges on the description of their prime factors by ideals invariant under the maximal torus of the ambient Kac-Moody group. We give an explicit description of these prime quotients by expressing their Cauchon generators in terms of sequences of normal elements in chains of subalgebras. Based on this, we construct large families of quantum clusters for all of these algebras and the quantum Richardson varieties associated to arbitrary symmetrizable Kac-Moody algebras and all pairs of Weyl group elements. Along the way we develop a quantum version of the Fomin-Zelevinsky twist map for all quantum Richardson varieties. Furthermore, we establish an explicit relationship between the Goodearl-Letzter and Cauchon approaches to the descriptions of the spectra of symmetric CGL extensions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.