Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing the Heterogeneity of the OpenStreetMap Data and Community (1503.06091v2)

Published 3 Mar 2015 in cs.SI, nlin.AO, and physics.data-an

Abstract: OpenStreetMap (OSM) constitutes an unprecedented, free, geographic information source contributed by millions of individuals, resulting in a database of great volume and heterogeneity. In this study, we characterize the heterogeneity of the entire OSM database and historical archive in the context of big data. We consider all users, geographic elements, and user contributions from an eight-year data archive, at a size of 692 GB. We rely on some nonlinear methods such as power-law statistics and head/tail breaks to uncover and illustrate the underlying scaling properties. All three aspects (users, elements, and contributions) demonstrate striking power laws or heavy-tailed distributions. The heavy-tailed distributions imply that there are far more small elements than large ones, far more inactive users than active ones, and far more lightly edited elements than heavily edited ones. Furthermore, about 500 users in the core group of the OSM are highly networked in terms of collaboration. Keywords: OpenStreetMap, big data, power laws, head/tail breaks, ht-index

Citations (55)

Summary

We haven't generated a summary for this paper yet.