Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shared latent subspace modelling within Gaussian-Binary Restricted Boltzmann Machines for NIST i-Vector Challenge 2014 (1503.05471v1)

Published 18 Mar 2015 in cs.LG, cs.NE, cs.SD, and stat.ML

Abstract: This paper presents a novel approach to speaker subspace modelling based on Gaussian-Binary Restricted Boltzmann Machines (GRBM). The proposed model is based on the idea of shared factors as in the Probabilistic Linear Discriminant Analysis (PLDA). GRBM hidden layer is divided into speaker and channel factors, herein the speaker factor is shared over all vectors of the speaker. Then Maximum Likelihood Parameter Estimation (MLE) for proposed model is introduced. Various new scoring techniques for speaker verification using GRBM are proposed. The results for NIST i-vector Challenge 2014 dataset are presented.

Summary

We haven't generated a summary for this paper yet.