Papers
Topics
Authors
Recent
Search
2000 character limit reached

Asymptotic properties of biorthogonal polynomials systems related to Hermite and Laguerre polynomials

Published 3 Feb 2015 in math.CA and math.CO | (1503.05387v1)

Abstract: In this paper, the structures to a family of biorthogonal polynomials that approximate to the Hermite and Generalized Laguerre polynomials are discussed respectively. Therefore, the asymptotic relation between several orthogonal polynomials and combinatorial polynomials are derived from the systems, which in turn verify the Askey scheme of hypergeometric orthogonal polynomials. As the applications of these properties, the asymptotic representations of the generalized Buchholz, Laguerre, Ultraspherical(Gegenbauer), Bernoulli, Euler, Meixner and Meixner-Pllaczekare polynomials are derived from the theorems directly. The relationship between Bernoulli and Euler polynomials are shown as a special case of the characterization theorem of the Appell sequence generated by $\alpha$ scaling functions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

  1. Yan Xu 

Collections

Sign up for free to add this paper to one or more collections.