Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Connecting Exceptional Orthogonal Polynomials of Different Kind (2310.16674v2)

Published 25 Oct 2023 in math.CA, math-ph, and math.MP

Abstract: The known asymptotic relations interconnecting Jacobi, Laguerre, and Hermite classical orthogonal polynomials are generalized to the corresponding exceptional orthogonal polynomials of codimension $m$. It is proved that $X_m$-Laguerre exceptional orthogonal polynomials of type I, II, or III can be obtained as limits of $X_m$-Jacobi exceptional orthogonal polynomials of the same type. Similarly, $X_m$-Hermite exceptional orthogonal polynomials of type III can be derived from $X_m$-Jacobi or $X_m$-Laguerre ones. The quadratic transformations expressing Hermite classical orthogonal polynomials in terms of Laguerre ones is also extended to even $X_{2m}$-Hermite exceptional orthogonal polynomials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. N. Bonneux, “Exceptional Jacobi polynomials,” J. Approx. Theory 239, 72 (2019); e-print arXiv:1804.01323.
  2. A. J. Durán, “Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials,” Integral Transforms Spec. Funct. 26, 357 (2015); e-print arXiv:1409.4697.
  3. M. A. García-Ferrero, D. Gómez-Ullate and R. Milson, “A Bochner type characterization theorem for exceptional orthogonal polynomials,” J. Math. Anal. Appl. 472, 584 (2019); e-print arXiv:1603.04358.
  4. M. A. García-Ferrero, D. Gómez-Ullate and R. Milson, “Exceptional Legendre polynomials and confluent Darboux transformations,” SIGMA 17, 016 (2021); e-print arXiv:2008.02822.
  5. D. Gómez-Ullate, Y. Grandati and R. Milson, “Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials,” J. Phys. A 47, 015203 (2014); e-print arXiv:1306.5143..
  6. D. Gómez-Ullate, N. Kamran and R. Milson, “An extended class of orthogonal polynomials defined by a Sturm-Liouville problem,” J. Math. Anal. Appl. 359, 352 (2009); e-print arXiv:0807.3939.
  7. D. Gómez-Ullate, N. Kamran and R. Milson, “Two-step Darboux transformations and exceptional Laguerre polynomials,” J. Math. Anal. Appl. 387, 410 (2012); e-print arXiv:1103.5724.
  8. D. Gómez-Ullate, F. Marcellán and R. Milson, “Asymptotic and interlacing properties of zeros of exceptional Jacobi and Laguerre polynomials,” J. Math. Anal. Appl. 399, 480 (2013); e-print arXiv:1204.2282.
  9. A. B. J. Kuijlaars and R. Milson, “Zeros of exceptional Hermite polynomials,” J. Approx. Theory 200, 28 (2015); e-print arXiv:1412.6364.
  10. C. Liaw, L. Littlejohn and J. Stewart Kelly, “Spectral analysis for the exceptional Xmsubscript𝑋𝑚X_{m}italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT-Jacobi equation,” Electron. J. Differential Equations 2015, 194 (2015); e-print arXiv:1501.04698.
  11. C. Liaw, L. L. Littlejohn, R. Milson and J. Stewart, “The spectral analysis of three families of exceptional Laguerre polynomials,” J. Approx. Theory 202, 5 (2016).
  12. I. Marquette and C. Quesne, “Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators,” J. Phys. A 46, 155201 (2013); e-print arXiv:1212.3474.
  13. H. Miki and S. Tsujimoto, “A new recurrence formula for generic exceptional orthogonal polynomials,” J. Math. Phys. 56, 033502 (2015); e-print arXiv:1410.0183.
  14. S. Odake, “Recurrence relations of the multi-indexed orthogonal polynomials,” J. Math. Phys. 54, 083506 (2013); e-print arXiv:1303.5820.
  15. S. Odake, “Recurrence relations of the multi-indexed orthogonal polynomials: III,” J. Math. Phys. 57, 023514 (2016); e-print arXiv:1509.08213.
  16. S. Odake and R. Sasaki, “Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials,” Phys. Lett. B 702, 164 (2011); e-print arXiv:1105.0508.
  17. S. Odake and R. Sasaki, “Infinitely many shape invariant potentials and new orthogonal polynomials,” Phys. Lett. B 679, 414 (2009); e-print arXiv:0906.0142.
  18. C. Quesne, “Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry,” J. Phys. A 41, 392001 (2008); e-print arXiv:0807.4087.
  19. C. Quesne, “Solvable rational potentials and exceptional orthogonal polynomials in supersymmetric quantum mechanics,” SIGMA 5, 084 (2009); e-print arXiv:0906.2331.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets