Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dirichlet heat kernel estimates for fractional Laplacian under non-local perturbation (1503.05302v1)

Published 18 Mar 2015 in math.PR

Abstract: For $d\ge 2$ and $0<\beta<\alpha<2$, consider a family of non-local operators $\mathcal{L}{b}=\Delta{\alpha/2}+\mathcal{S}{b}$ on $\mathbb{R}d$, where $$ \mathcal{S}{b}f(x):=\lim_{\varepsilon\to 0}\mathcal{A}(d,-\beta)\int_{ {z\in \mathbb{R}d: |z|>\varepsilon}} (f(x+z)-f(x))\frac{b(x,z)}{|z|{d+\beta}}\,dz, $$ and $b(x,z)$ is a bounded measurable function on $\mathbb{R}{d}\times\mathbb{R}{d}$ with $b(x,z)=b(x,-z)$ for every $x,z\in\mathbb{R}{d}$. Here ${\cal A}(d, -\beta)$ is a normalizing constant so that $\mathcal{S}b=-(-\Delta){\beta/2}$ when $b(x, z)\equiv 1$. It was recently shown in Chen and Wang [arXiv:1312.7594 [math.PR]] that when $b(x, z) \geq -\frac{\mathcal{A}(d, -\alpha)} {\mathcal{A}(d, -\beta)}\, |z|{\beta -\alpha}$, then $\mathcal{L}b$ admits a unique fundamental solution $pb(t, x, y)$ which is strictly positive and continuous. The kernel $pb(t, x, y)$ uniquely determines a conservative Feller process $Xb$, which has strong Feller property. The Feller process $Xb$ is also the unique solution to the martingale problem of $(\mathcal{L}b, \mathcal{S}(\mathbb{R}d))$, where $\mathcal{S}(\mathbb{R}d)$ denotes the space of tempered functions on $\mathbb{R}d$. In this paper, we are concerned with the subprocess $X{b,D}$ of $X{b}$ killed upon leaving a bounded $C{1,1}$ open set $D\subset \mathbb{R}d$. We establish explicit sharp two-sided estimates for the transition density function of $X{b, D}$.

Summary

We haven't generated a summary for this paper yet.